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a b s t r a c t

In this paper, we further analyze a combined compact difference (CCD) scheme proposed
recently [T.K. Sengupta, V. Lakshmanan, V.V.S.N. Vijay, A new combined stable and disper-
sion relation preserving compact scheme for non-periodic problems, J. Comput. Phys. 228
(8) (2009) 3048–3071] for its dissipation discretization properties to show that its superi-
ority also helps in controlling aliasing error for a benchmark internal flow. However, appli-
cation of the same CCD method to study the receptivity of a boundary layer experiencing
adverse pressure gradient is not successful. This is traced to the nature of the equilibrium
flow where the better dissipation property is not helpful in the inviscid part of the flow,
where the aliasing problems continue to persist. A further modification is proposed to
the CCD method here to solve complex physical problems requiring information on higher
order disturbance quantities – as in problems of flow receptivity and instability.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Combined compact difference (CCD) schemes are very high accuracy methods where first and second derivatives are eval-
uated simultaneously, from implicit relations between the dependent variable and its derivatives obtained using Hermitian
polynomials [1–4]. This method belongs to the family of compact schemes and hence affords near-spectral accuracy in solv-
ing convection–diffusion dominated flows, as noted in [5–8]. In [5], methods are indicated to obtain first and second deriv-
atives separately by using compact schemes. CCD schemes [2–4,8] provide second derivatives simultaneously, that makes
computations faster, increasing the efficiency via enhanced resolution of dissipation terms for convection–diffusion domi-
nated problems. This makes the method very attractive, however only when one works in the physical plane with uniform
grids.

In all the presented results here, we have used the four-stage fourth-order accurate Runge–Kutta method for time
advancement as defined and analyzed in [7,11]. The analysis of compact schemes for first derivatives has attracted a lot
of attention in [6,7,9,10] to investigate wave propagation problems. Such analyses indicate the suitability of the method
for solving convection dominated problems. In [11], a comprehensive analysis is made to understand what constitutes error
in a signal propagation problem establishing the correct error analysis, as opposed to the existing von Neumann analysis. The
application of this analysis technique for solving uni- and bi-directional wave problems was also provided in [4], while inves-
tigating an improved CCD scheme. The same scheme is analyzed and compared with other methods for their dissipation dis-
cretization and de-aliasing properties. In this method [4], not only the dispersion relation preservation (DRP) property is
. All rights reserved.
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Aliasing errors are made whenever products of two or more space dependent functions are computed. This does not have
to occur due to nonlinearity of the problem [14]. For example in [14], the source of aliasing was traced to the discretization of
dissipation terms in the transformed plane. However, in the present exercise we compute the Navier–Stokes equation in the
physical plane using uniform grids. For such a case, the only source of aliasing is due to the nonlinear convection terms. The
topic of aliasing error has received attention due to its importance in computing different fluid flows and other problems of
mathematical physics [15–19]. In [15,18], aliasing is proposed to be controlled by reformulating the governing equations.
General discussion on aliasing in computations are available in [14,16,17] with respect to finite difference methods using
non-uniform grids. Specific post-processing methods to control aliasing are given in [14,16,19]. It is noted that aliasing prob-
lem leads to numerical instability specifically for high wave number components.

For the square lid-driven cavity problem, aliasing increases with Reynolds number. For example, for Re P Recrit , the flow
becomes time-dependent and one requires good DRP property to capture the correct space-time dependence. Additionally,
with increase in Re, newer length scales appear in the form of smaller vortices forming inside the cavity. The corner vortices
[20] clearly show the presence of newer scales, specifically near the top right corner and these created high wave numbers
cause aliasing. This increase of band-width of the energy spectrum requires increased resolution of the numerical method. If
the grid resolution is not increased proportionately with Re, convection terms produce aliasing leading to accumulation of
energy at high wave numbers. Left uncontrolled, this energy pile-up leads to numerical instability. This is a major source of
error and should be avoided at all costs. Bruneau and Saad [21] have used ð1024� 1024Þ grid to obtain solution for
Re ¼ 10;000, while using CD2 scheme in discretizing diffusion terms and third order upwind scheme for convection terms.
The CD2 for the dissipation terms attenuates it appreciably, making the equivalent Re higher than the actual value. At the
same time, use of higher order upwind schemes compensate this loss of physical dissipation at the higher wave numbers.
Use of staggered grid also helps to remove aliasing error [14]. Use of staggered grid with low order method is based on
the similar work reported in [22]. In [23], a seventh order upwind scheme was used to discretize the convection terms
and a sixth order central difference method to discretize diffusion terms on a collocated grid for the lid-driven cavity flow
problem.

There are just the opposite effects on aliasing by lower and higher accuracy methods for the discretization of convection
and diffusion terms. Discretization of convection terms by lower accuracy methods severely attenuates the unknown at
higher wave numbers reducing the effect of aliasing. In contrast, high accuracy methods do not filter at moderate length
scales and are prone to display aliasing if adequate resolution is not used. For dissipation terms, lower accuracy methods
have lower effective dissipation, which is equivalent to increasing Re that will excite more spatial scales increasing the pos-
sibility of aliasing. For high accuracy methods, the dissipation terms are properly resolved [4] preventing formation of spu-
rious additional scales that can add to aliasing. For the CCD method in [4], the evaluated second derivatives have more than
adequate dissipation across all wave numbers. Here we explore the consequence of this property of the CCD method [4],
whether this can be effectively used to alleviate the problem of aliasing in comparison to other high accuracy methods.
We also test this for both internal and external flows and if necessary, propose further improvements to the CCD method [4].

The paper is formatted in the following manner. In the next section, we describe briefly the CCD scheme and provide var-
ious performance parameters for the diffusion terms along with a discussion on effectiveness of dissipation discretization. In
Section 3, results for the square lid-driven cavity problem are discussed with respect to aliasing effects and its control for
internal flows. In Section 4, receptivity of boundary layer experiencing adverse pressure gradient to time-harmonic excita-
tions is studied. Such excitations create instability waves and makes a good test case for external flows. Finally, a summary
and conclusion is provided in Section 5.

2. Combined compact difference scheme for non-periodic problem

Let us consider a domain with ðN þ 1Þ equidistant points with spacing Dx where a function u is defined. The CCD scheme
is used to simultaneously evaluate the first and second derivatives ðu0j;u00j ) from the following discrete equations for interior
nodes, in terms of the function ðujÞ values [2,8],
7
16
ðu0jþ1 þ uj�1Þ0 þ u0j �

Dx
16
ðu00jþ1 � u0j�1Þ ¼

15
16Dx

ðujþ1 � uj�1Þ ð1Þ

9
8Dx
ðu0jþ1 � u0j�1Þ �

1
8
ðu00jþ1 þ u00j�1Þ þ u00j ¼

3
Dx2 ðujþ1 � 2uj þ uj�1Þ ð2Þ
Eq. (1) is used for j ¼ 3 to ðN � 1Þ, while Eq. (2) is used for j ¼ 2 to j ¼ N. If we consider Dirichlet boundary conditions at j ¼ 1
and ðN þ 1Þ, then there are ð2N þ 2Þ unknown derivatives, with four unknowns provided at the nodes, j ¼ 1 and ðN þ 1Þ for
the derivatives. These boundary derivatives are used as: at j ¼ 1 : u01 ¼ ð�1:5u1 þ 2u2 � 0:5u3Þ=Dx and u001 ¼
ðu1 � 2u2 þ u3Þ=ðDxÞ2. At j ¼ ðN þ 1Þ, we have used similar expression for u00ðNþ1Þ, while for u0ðNþ1Þ the expression on the right
hand side has signs reversed. We however, note that in solving Navier–Stokes equation we do not need the derivatives at the
boundaries, where only the Dirichlet conditions on w are used. Wall vorticity is calculated from the kinematic definition of it
from the stream function equation.

A full-domain analysis method [6] applied on the CCD scheme of [2] for the one dimensional convection problem shows it
to be numerically unstable near the inflow boundary. Similar instability near inflow boundary was diagnosed earlier for
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many compact schemes and new boundary stencils were proposed to rectify this instability problem in [6]. Hence, for the
CCD scheme [2] we have used similar boundary stencils, and the analysis in [4] show that this rectified and controlled near-
boundary instability. Additional two equations to complete the system are given by,
u02 ¼
1
Dx

2b2

3
� 1

3

� �
u1 �

8b2

3
þ 1

2

� �
u2 þ ð4b2 þ 1Þu3 �

8b2

3
þ 1

6

� �
u4 þ

2b2

3
u5

� �
ð3Þ

u0N ¼ �
1
Dx

2bN

3
� 1

3

� �
uNþ1 �

8bN

3
þ 1

2

� �
uN þ ð4bN þ 1ÞuN�1 �

8bN

3
þ 1

6

� �
uN�2 þ

2bN

3
uN�3

� �
ð4Þ
with b2 ¼ �0:025 and bN ¼ 0:09. These constants for Eqs. (3) and (4) were optimized for the OUCS3 scheme defined in [6,14]
for the first derivative and they have been adopted here as they are.

The multiplicative constants in Eqs. (1) and (2) for the interior stencils are fixed by matching coefficients of Taylor series
expansion up to the sixth order. Thus, we have a complete linear algebraic system for the evaluation of first and second
derivatives as defined later in Eq. (10). In the present work, we highlight only essential steps and leave out the intermediate
steps for the readers to refer to [4,11] where a complete analysis has been provided for the discretization method and asso-
ciated error evolution equation.

Exact spatial first derivative of u is given by, @u
@x

� �
exact ¼

R
ikUeikxdk where k denotes the wave number in the spectral plane.

Discrete computing methods obtain this first spatial derivative u0 as,
u0j
h i

numerical
¼
Z

ikeqUeikxj dk ð5Þ
with different methods having different expressions for keq. The quantity keq

k is in general complex, with the real part repre-
senting the numerical method’s ability to resolve various scales in the spectrum and the imaginary part indicates added
numerical dissipation, when it is negative. One can adopt the same procedure in expressing the second spatial derivative

in the spectral plane in a non-dimensional form, with the real part of � kð2Þeq

k2 representing scale-wise dissipation and the imag-

inary part representing added numerical dispersion. We can also write the CCD stencils given by Eqs. (1)–(4) as linear alge-
braic equations given by,
½A1�fu0g þ ½B1�fu00g ¼ ½C1�fug ð6Þ
½A2�fu0g þ ½B2�fu00g ¼ ½C2�fug ð7Þ
On solving these two simultaneous equations we arrive at,
fu0g ¼ 1
Dx
½D1�fug ð8Þ

fu00g ¼ 1
Dx2 ½D2�fug ð9Þ
where,
½D1� ¼ ð½A1� � ½B1�½B2��1½A2�Þ�1ð½C1� � ½B1�½B2��1½C2�Þ
½D2� ¼ ð½B2� � ½A2�½A1��1½B1�Þ�1ð½C2� � ½A2�½A1��1½C1�Þ
Thus, keq

k and
kð2Þeq

k2 for different nodes for first and second derivatives are evaluated from Eqs. (8) and (9) as,
keq

k

� �
j
¼ 1

kDx

XNþ1

l¼1

ðD1ÞjlðPÞlj

kð2Þeq

k2

 !
j

¼ 1

ðkDxÞ2
XNþ1

l¼1

ðD2ÞjlðPÞlj
where j defines the node number and ðPÞlj ¼ eiðl�jÞkDx is the element of the projection matrix that helps defining the deriva-
tives locally, so that a comparison is possible directly with spectral method.

However, while implementing the above mentioned CCD scheme to obtain simultaneously the first and second deriva-
tives for solving governing differential equations, we recommend not to follow the matrix inversion method as indicated
above that involves large computations. The above expressions are used for analysis only. Instead, it is advised to use the
Block Tridiagonal Matrix Algorithm (Block TDMA), [25] to reduce computational time and improve efficiency of solution pro-
cess. The necessary framework of the structure of the scheme to obtain derivatives efficiently is demonstrated below. We
rewrite the CCD stencils given by Eqs. (1)–(4) as,
½A�fdug ¼ fBg ð10Þ
where the matrix ½A� can be expanded as,
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and the unknown fdug vector can be written as,
fdug ¼ fdu1 du2 du3 . . . dui�1 dui duiþ1 . . . duN�1 duN duNþ1 gT
and likewise vector fBg can be written as,
fBg ¼ f b1 b2 b3 . . . bi�1 bi biþ1 . . . bN�1 bN bNþ1 gT
Thus, the i-th nodal equation for the above system, ½A�fdug ¼ fBg is given by,
½P�ifdugi�1 þ ½Q �ifdugi þ ½R�ifdugiþ1 ¼ fbgi ð11Þ
It is noted that each individual element of matrix ½A� is a ð2� 2Þ block matrix and fdug and fBg are ð2� 1Þ vectors. For the
interior stencils, along the i-th row of ½A�, elements of (11) can be written as,
½P�i ¼
7

16
Dx
16

� 9
8Dx � 1

8

" #

½Q �i ¼
1 0
0 1

� �

½R�i ¼
7

16 � Dx
16

9
8Dx � 1

8

" #
These expressions of the block matrices hold for interior nodes only. Elements along the i-th row of vectors fdug and fBg are
given by,
fdugi ¼
u0i
u00i

� 	

fbgi ¼
15

16Dx ujþ1 � uj�1

 �

3
Dx2 ujþ1 � 2uj þ ujþ1

 �

( )
In the same way, one can also represent the boundary stencil given in Eqs. (3) and (4) to form the modified ð2� 2Þ block
matrices at j ¼ 2 and N to form a complete system. Note that the solution of Eq. (10) will provide the first and second deriv-
ative from j ¼ 1 to ðN þ 1Þ. Thus for a non-periodic problem, with Dirichlet boundary conditions provided at j ¼ 1 and
j ¼ ðN þ 1Þ, one would use the computed derivatives from Eq. (10) from j ¼ 2 to N only.

To quantify effectiveness of dissipation discretization terms by any numerical method, we define an equivalent gain func-
tion GFðkÞ as,
GFðkÞ ¼ �
kð2Þeq

k2

 !
real

ð12Þ
where the subscript real indicates the real part of the complex quantity � kð2Þeq

k2 .
Ideally, the numerical method should have the right hand side of Eq. (12) as unity over the entire range of resolved wave

numbers, i.e., the Nyquist limit. However, any discrete computing method does not satisfy this requirement uniformly all the
way up to the Nyquist limit. This departure from ideal value represents the loss of effectiveness of the dissipation discret-
ization with respect to the corresponding spectral representation. Thus, we define a function LFðkÞ as,
LFðkÞ ¼ 1� GFðkÞ ð13Þ
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that provides the relative loss of physical dissipation due to discretization as a function of wave number.
In Fig. 2a, GFðkÞ is plotted against kDx at different nodes for different discrete schemes, comprising the CD2; the CD4 ex-

plicit schemes; the compact scheme of Lele for second derivative [5] and the CCD scheme represented by Eqs. (1)–(4). Here,
we considered a domain of 31 points for the analysis. The explicit schemes’ properties are same at all nodes, while the prop-
erties of implicit schemes are node-dependent. Moreover for the implicit schemes, properties at most of the interior nodes
are same, with significant departures noted for the near-boundary points. It is for these reasons we have shown only some
typical nodal properties near the center and one of the boundaries in Figs. 2a and 2b. Near the inflow (j ¼ 2 and 3), original
CCD scheme [2] introduces anti-diffusion while obtaining the first derivative and this was rectified by using Eqs. (3) and (4)
for boundary closure in [4]. It is obvious that the CD2 scheme acts as a very low-pass filter and the figure shows serious loss
of dissipation at all wave numbers except a very small range near the origin. However, it is noted that unlike the case of first

spatial derivative (where the equivalent wave number drops to zero at the Nyquist limit), the quantity � kð2Þeq

k2

� �
real

has a value

of 4
p2 for the CD2 scheme at kDx ¼ p. For DNS, the Nyquist limit corresponds to the Kolmogorov scale where kinetic energy is

converted into heat by the action of molecular viscosity. Thus, an inferior resolution of dissipation at this scale severely com-
promises the ability for DNS. It is clear that the CD4 scheme is superior to CD2 scheme across all length scales. Specifically,
there is significant improvement of 38%, at the smallest length scale ðkDx ¼ pÞ, while for the intermediate kDx ranges, there
is uniform benefit. It is seen that there is no loss of physical dissipation up to kDx ¼ 1:0 for the CD4 scheme, a similar feature
was noted while discretizing convection terms by the fourth-order accurate central difference formula [14]. The high reso-
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Fig. 2a. The gain function, GFðkÞ ¼ �keq
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n o
is plotted against kDx for different schemes at near-boundary ðj ¼ 2&3Þ and inner stencil ðj ¼ 15Þ points for

different schemes. Explicit second and fourth-order schemes ðCD2&CD4Þ are inferior to Lele’s compact scheme [5] and CCD scheme [4]. OUCS3 scheme [6]
for first derivative has been applied twice to obtain the second derivative. The dashed line in each frame indicates the ideal value of GFðkÞ ¼ 1.
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lution of compact schemes for first derivatives also extend to the second derivatives- noted for interior, as well as the near-
boundary points in Fig. 2a. In the figure, GFðkÞ for the compact scheme of [5] is found to be superior than the CD2 and the CD4

schemes. For this scheme at the interior of the domain, effectiveness of physical dissipation is preserved till kDx ¼ 1:5 and
there is 75% improvement in physical dissipation representation at the Nyquist limit as compared to the CD2 scheme. The
effectiveness of CCD scheme [4] is seen to be the best among all these methods, as there is no loss of physical dissipation
up to a kDx range that is much higher than the method in [5]. Moreover, there is an overshoot at higher wave numbers indi-
cating additional dissipation that can actually work as an advantage for the method, which is explained as a way to control
aliasing. We have already noted that a second derivative can be obtained by using the method to calculate first derivative
twice in succession. However, the effectiveness of calculating the first derivative is always reduced to zero at the Nyquist
limit and thus calculating second derivative by applying a method of calculating first derivative twice was considered infe-
rior. But, Fig. 2a shows the curious feature of OUCS3 method when applied twice to obtain the second derivative, to have
better discretization property than the compact method of [5] up to a larger range of kDx – as seen for interior nodes. This
is however, not the case for the near-boundary points. The second derivative can be obtained in the interior of the domain
without any loss, up to kDx ¼ 1:92 by the OUCS3 method, as compared to [5] providing a 25% improvement. This benefit of
OUCS3 method can be further extended to higher wave numbers by judicious use of upwinding while evaluating convection
terms and this is described later. The OUCS3 method is not superior to the methods of calculating second derivatives directly
[5] for the near-boundary points ðj ¼ 2;3Þ.

Next, one would like to quantify the loss of physical dissipation as a function of k. In Fig. 2b, LFðkÞ vs. kDx is shown for all
these schemes at different nodes. In this figure, severe loss of physical dissipation incurred by the explicit central differenc-
ing methods over a large band of length scales is evident. This is lesser for the Lele’s scheme for the interior nodes only. One
can notice further improvement when OUCS3 scheme is used twice to obtain the second derivative for the interior nodes.
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The CCD scheme shows no loss of dissipation for all k. Instead, it adds extra dissipation at wave numbers given by kDx P 1:8
and this helps to reduce aliasing error at higher k. We have noted that energy piles up at higher k due to aliasing and excess
dissipation of CCD scheme can effectively remove this at every step of the computation. This is demonstrated by solving Na-
vier–Stokes equation in the next section.

Next, we show how OUCS3 scheme for second derivative can be used effectively to compute Navier–Stokes equation by
a judicious mix of upwinding the corresponding convection term. In Fig. 3, the loss function of OUCS3 method in calcu-
lating the second derivative is shown by a solid line. A negative value in the figure implies a loss of dissipation and the
figure shows that it starts affecting the calculations at kDx ¼ 1:92. However, in an actual calculation where the convection
terms are also evaluated by OUCS3 scheme, the overall method can retain its accuracy up to a higher value of kDx. Since
the OUCS3 method for the first derivative is an upwind scheme, one actually adds implicitly some dissipation via the high-
er order dissipation term of the form gDx3 @4u

@x4 . By a proper choice of g, one can add numerical dissipation via this term at
high k only, where the loss of physical dissipation is noted. In Fig. 3, added dissipation is shown along the positive ordi-
nate for different values of g that can counteract the loss of physical dissipation of the OUCS3 method shown along the
negative ordinate. In the convection terms of Navier–Stokes equation, local velocity components appear multiplied with
the numerical dissipation term and thus no general prescription can be provided to counteract the loss of physical dissi-
pation. However, the literature is replete with evidences by various efforts where upwinding has been noted as an effec-
tive procedure to produce accurate solution, specially in performing LES [26]. This is also essentially the basis for
performing monotone implicit large eddy simulations (MILES). Additional dissipation enforced at higher wave numbers
not only regains the loss of physical dissipation but also provides a means to control the aliasing error which is mostly
dominant at higher k.

We re-iterate that the CCD scheme has the unique property among the compact schemes that the physical dissipation is
represented exactly at low- to mid-range of k, while it provides additional dissipation at higher k to provide additional mech-
anism to control aliasing at higher k. Thus, the combined effect of high resolution for the first derivatives in CCD [4], and
adequate representation of physical dissipation without any loss, coupled with the additional degree of freedom in control-
ling aliasing error makes it an excellent method for high accuracy simulation. To show this, we present the solution of 2D
Navier–Stokes equation by solving (a) the square lid-driven cavity problem for Re ¼ 10;000 and (b) the receptivity calcula-
tion of a boundary layer experiencing adverse pressure gradient with respect to a localized time-harmonic excitation. For
such unsteady internal and external flows, large range of k are excited those contribute to aliasing arising solely from the
convection terms.

3. Two-dimensional square lid-driven cavity problem

The flow in a square lid-driven cavity (LDC) constitutes a classical benchmark problem, due to its unique boundary con-
ditions that allow comparison of any new method’s potential in solving Navier–Stokes equation. Here, the two-dimensional
incompressible, viscous flow is solved in stream function-vorticity formulation given in non-dimensional form by,
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where x is the only non-zero component of vorticity vector normal to the plane of the flow; w represents the stream function
and ðu;vÞ are the Cartesian components of the velocity in the x- and y-directions, respectively. The (w�x) formulation is suit-
able due to various reasons. The primary reason is for checking CCD, that requires working in a collocated uniform grid. One
can use primitive variable formulation, but for numerical reasons one needs to either work on a staggered grid (as in [22]) or
use an upwind scheme in a collocated grid. Present CCD method uses a central scheme and is suited for working on non-stag-
gered grid. This formulation is also known for its inherent accuracy and computational efficiency in satisfying mass conser-
vation exactly over the full domain. As we intend to use the present CCD scheme for solving Eqs. (14)–(17), we have used a
uniform grid with ð256� 256Þ points for simulating the flow at Re ¼ 10;000. To solve Eq. (14), we have used the Bi-CGSTAB
method- a fast and convergent elliptic pde solver [24]. Residual convergence criteria for Eq. (14) is taken as 10�6 and the CCD
scheme is used also to discretize second derivatives of w. In obtaining the first and second derivatives for Eqs. (14) and (15) by
CCD method, we have used the Block Tridiagonal matrix algorithm (Block TDMA) [25] to reduce the number of computations
otherwise involved in obtaining and evaluating the inverse of the matrices D1 and D2 for solving Eqs. (8) and (9).

Results for this flow obtained by the CCD method are compared with the solution obtained by using a different method of
discretization. In this alternate method, we used the OUCS3 scheme [6,14] for discretizing the convection terms and the
Lele’s scheme [5] for discretizing the diffusion terms. We call this alternate as the OUCS3-Lele method here. To test aliasing
and stability properties of this alternate method, we first solved Eqs. (14)–(17) using the CCD method to obtain the solution
for which the transients have decayed. This ‘‘equilibrium solution” obtained at t ¼ 300 is already shown in Fig. 1. We have
used this as the initial solution for further simulation by the OUCS3–Lele method. Lack of effective dissipation discretization
of this method has the twin effects of (i) causing the numerical simulation to be for an effectively higher Reynolds number
flow and (ii) being unable to control aliasing at high k. In the vorticity contours of Fig. 1, one can clearly see minor grid scale
oscillations under the lid on top right corner.

In the computed solution with the CCD scheme, one notes multi-periodic nature of the vorticity field with time. The mul-
tiplicity of the time scales is due to different vortical structures noted in different part of the cavity in Fig. 1, with different
topology and dynamics with well defined time period. We note that the solution obtained by CCD scheme provides an alto-
gether new intermediate solution. In this solution, a triangular vortex is noted at the center of the cavity, surrounded by
three gyrating vortices as satellites. Existence of triangular vortex has been reported earlier in [12,13] for different rotational
flows both experimentally and numerically- but in both these cases triangular vortex was found to be transient in nature in
the experiment. Flows were simulated using discrete vortex models in these references- and not by solving full Navier–
Stokes equation. We attribute the success of the CCD method to the proper resolution of dissipation terms and an effective
coupling between the discretization of convection and diffusion terms in combination. Computed vortical structures are
found to be multi-periodic, stable and self-sustaining over a long period of time, once the triangular vortex has been formed.
Vorticity contours obtained by the CCD method are shown in Fig. 4 for various non-dimensional times up to t ¼ 580; the
computations have been performed even longer that show the triangular vortex to persist. The evolution of the weak trian-
gular vortex is caused by the gyration of the outer layer of rotating fluid, that in turn has been caused by the constant lid
motion. From t ¼ 300 to t ¼ 400, the triangular vortex shrinks from its full size, as it becomes weaker and weaker. Subse-
quently, the vortex grows again fed by another layer of fluid from the outer rotating layer. The continuous supply of energy
provided by the driven lid enables the cyclic variations seen for the triangular core.

In Fig. 5, vorticity contours obtained using OUCS3–Lele method are compared with the results from the CCD method. It is
seen that the two solutions match overall- as noted up to t ¼ 340. Same contour levels are shown in all the frames of Figs. 4
and 5 for an effective comparison. The phase and dispersion properties of any two methods differ and that is responsible for
the mismatch seen here. Some high k oscillations are noted in Figs. 4 and 5, on the top right hand corner due to aliasing, that
is more for the OUCS3–Lele method. Both the methods have similar propagation property (as shown in [4]), it is the lesser
effectiveness of dissipation discretization of OUCS3–Lele method at higher k that is responsible for higher aliasing. Despite
the simple geometry and unambiguous boundary conditions, this flow is complex. The flow remains confined, but the energy
is continuously fed through the lid motion. Existence of strict multi-periodicity indicates a steady state, that is achieved by
accurate discretization method ensuring proper resolution of convection and diffusion terms in providing neutral numerical
stability. It would be shown in Fig. 6, that there are also qualitative differences between these two methods at subsequent
times. However, both the methods do not suffer excessively from the effects of aliasing to cause numerical instability i.e. the
aliasing error is not cumulative in this case.

In Fig. 6, we have shown the vorticity time histories of the obtained solutions at fixed location ð0:95;0:95Þ in the cavity
using CCD (top-left) and OUCS3–Lele methods (top-right) to show multiple time-periodic solution at this Re that agrees well



Fig. 4. Vorticity contours for the LDC problem obtained by CCD scheme for Re ¼ 10; 000 during t ¼ 300 to t ¼ 580 are shown. The vortical structures are
stable. Identical contours are plotted in all the frames of Figs. 4 and 5.
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Fig. 5. Vorticity contours obtained using OUCS3–Lele method for Re ¼ 10;000 during t ¼ 305–t ¼ 340, are compared with the solution obtained by CCD
method. Solution at t ¼ 300 is used as initial condition for the OUCS3–Lele method.
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Fig. 5 (continued)
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Fig. 6. The time history of vorticity at (0.95,0.95) obtained by CCD (top-left) and OUCS3–Lele (top-right) schemes. Corresponding frequency contents are
shown in the bottom frames for these methods.
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with the values reported in literature. The time history shows a time period of tp ¼ 2:29 for the CCD method and on an aver-
age tp ¼ 2:30 for the OUCS3–Lele methods. Also shown are the corresponding Fourier transforms of these signals immedi-
ately below the time histories. The left frame clearly shows the presence of distinct multiple modes occurring at
frequencies b ¼ 2:73;5:46;8:22;10:92;13:68 for the CCD method. However, in case of OUCS3–Lele method, there are no dis-
tinct modes and has wide spectrum which is directly due to larger aliasing effects due to poorer dissipation discretization.
The most prominent peaks for this method are at b ¼ 1:738;2:797;3:476;4:534;5:59 and shows them to be different from
the peaks of CCD method and this is due to aliasing.

In order to further quantify aliasing error arising out of different computing methods, let us consider the product of two
terms in the physical space given by,
qðxjÞ ¼ uðxjÞvðxjÞ ð18Þ
Consider the finite Fourier series representation of the above terms in a uniform grid of size Dx. Thus, we have,
qðxjÞ ¼
XN2�1

l¼�N
2

Q le
ikðjDxÞ

uðxjÞ ¼
XN2�1

n¼�N
2

UneinðjDxÞ
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is shown in spectral plane by plotting QðkÞ against kDx for the times shown in Fig. 5. The results of

OUCS3–Lele method show higher aliasing as compared to CCD method.
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vðxjÞ ¼
XN2�1

m¼�N
2

VmeimðjDxÞ
where Dx ¼ 2p
N .

Forming the direct product and obtaining the Fourier transform of q, yields
Q k ¼
X

nþm¼k

UnVm þ
X

nþm¼k�N

UnVm ð19Þ
Note that the second term arises because the ðnþmÞ modes exceed the maximum resolved mode number N, i.e., the phase
increases above þp or goes below �p (associated with 2Dx wavelength variation). In these cases, corresponding harmonics
will have wavelengths corresponding to ½2p� ðmþ nÞDx�, and will appear at a lower wave number. This phenomenon of ali-
asing error is visually noticeable as grid-scale oscillation for the largest resolved value of k.

In the following analysis with the Navier–Stokes solution, we consider one of the contributing products involved in the
convection terms that create aliasing error: q ¼ u @x

@x where u ¼ ð@w
@yÞ. We evaluate this product from the computed solution in

Figs. 4 and 5 at fixed specified height from the bottom at y ¼ 0:25 of the computational domain at different times. In eval-
uating this product, we discretize the derivatives in the same combinations, as that is used in the actual computations: (a)
CD2 scheme for u and OUCS3 scheme for ð@x

@x Þ for the OUCS3–Lele method and (b) the CCD scheme for both u and ð@x
@x Þ for the

CCD method. We represent the product q in it’s correct Fourier–Laplace integral form as
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Fig. 7 (continued)
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qðx; tÞ ¼
Z 1

�1
Qðk; tÞeikxdk
The variation of Qðk; tÞ are shown plotted in Fig. 7 at the indicated height and times. In all the figures, QðkÞ has higher
value at higher wave numbers for the OUCS3–Lele method, as compared to the CCD method. Having a tail and non-zero value
at the Nyquist limit in the spectrum provides an indication of aliasing error and it is clearly the case with the OUCS3–Lele
method. Also, in the tail if the value of Qðk; tÞ keeps increasing with k, then it is an indication of spurious energy pile-up that
can lead to numerical instability due to aliasing. In both the methods, some small amount of aliasing effects are noted at
times, but never high enough to cause instability or perceptible spurious oscillations. Due to added diffusion in CCD method
at high k, this aliasing is controlled better at high k. From Fig. 7, it is clearly noted that the OUCS3–Lele method has a per-
ceptible tail at all the time frames shown. Easy way to control the aliasing is by using more grid-points or using a very high-
order filter to remove energy from the grid-scale level.
4. Receptivity calculation of adverse pressure gradient boundary layer flow

In the previous section, we have noted for an internal flow the CCD method to outperform another method that is a com-
bination of two accurate compact schemes to evaluate first and second derivatives. We specifically noted the advantages of
the CCD method which, while computing the second derivative reduces the problem of aliasing created by the convection



XY-S
5 0 S
5 1 1
5 2 2
5 3 3
5 4 4
5PCF C

T . K 9 S e n g u p t a e t a l 9 / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 2 8 ( 0 0 . 9 ) 6 7 5 0 … 6 1 6 86 1 6 5
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Distinguishing between internal and external flows must be demonstrated clearly and in this section we look at the case
of flow instability in a wall-bounded external flow. As noted above, over-emphasis of dissipation terms at high k works in
those parts of the flow, where second derivative is physically relevant and active. This was the case for LDC problem. For
a thin shear layer forming over a wall, the dissipative terms are unimportant outside the shear layer. In those parts of the
flow if aliasing arises, then CCD method will not alleviate it. Unfortunately in non-uniform grid calculations, large grid spac-
ing is kept where dissipation terms are unimportant. However, non-homogeneity of flow can excite large k range in the
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Fig. 9. Receptivity solution for the laminar flow shown in Fig. 8 to an excitation caused by a simultaneous blowing-suction strip at the wall for the indicated
times is shown. The top frame result obtained by CCD method without upwinding that shows severe aliasing outside the shear layer. The bottom three
frames show results obtained by CCD method with upwinding. Note the absence of aliasing in these frames.
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inviscid part of the flow. This is further accentuated in the presence of adverse pressure gradient. Thus, lack of dissipation in
that part of the flow, where large range of k are excited will continue to cause aliasing there. This is demonstrated here with
the help of a flow forming over a flat plate experiencing adverse pressure gradient. For this flow, one can obtain a similarity
profile by solving the Falkner–Skan equation [25]. However, such a similarity solution is valid only far away from the leading
edge and for strong adverse pressure gradient the flow separates, invalidating thin shear layer approximation. Thus, the flow
field is obtained by solving Navier–Stokes equation, including the leading edge of the plate so that the growth of the bound-
ary layer is accounted for the receptivity calculation, when the flow is excited by a localized time-harmonic excitation
source. This receptivity problem was experimentally and theoretically investigated in Seifert and Tumin [27] and its direct
simulation results are presented here in 2D framework.

We have solved Navier–Stokes equation in two stages. Firstly, we solve it without any excitation, using the CCD method
over the flat plate by taking ð801� 601Þ equispaced points in the stream-wise and wall-normal direction, respectively. The
computational domain extends from �0:5L 6 x 6 7:5L in the stream-wise direction and 0 6 y 6 0:6L, where L is the length
scale of the problem and here it is fixed by the exciter location which is at a distance of 2:5L from the leading edge. Based on
L, the computed flow is for Re ¼ 60;000. The flow experiences an impressed adverse pressure gradient, given by the Falkner–
Skan parameter, m ¼ �0:04762, where m ¼ x

Ue

dUe
dx and Ue is the shear layer edge velocity. We apply a uniform flow condition

at the inlet of the domain. On the top of the domain, a potential solution is used and at the outflow, a Sommerfeld type
boundary condition is applied on the vorticity, as described in [28]. The equilibrium vorticity solution obtained by using
the CCD method is depicted in Fig. 8 at t ¼ 77 and t ¼ 85, in the top two frames. The computational domain includes the
leading edge of the plate, upstream of it there are no physical sources of dissipation. Thus, the flow experiences discrete jump
in shear going along y ¼ 0. The flow displays high frequency aliasing effects in the form of upstream propagating distur-
bances starting from the leading edge of the flat plate. These disturbances upon reflection from the inflow of the domain,
attenuates while traveling downstream. Flow discontinuities also are seen to start from the edge of the shear layer that orig-
inates from the leading edge of the plate. These upstream propagating spurious disturbances are seen clearly in the top two
frames of Fig. 8. If the problem is left unattended, this leads to solution divergence for the subsequent instability/ receptivity
calculations, as shown in Fig. 9. Thus in the immediate neighborhood of the leading edge and above the shear layer, flow is
inviscid but experiences sharp gradient that works as a site from where aliasing error is trigerred. In the middle frame of
Fig. 8, solution is shown at t ¼ 85 and one can see undiminished problem in the computed flow field. Specifically, a point
P is identified where the level of spurious vorticity value is of the order of 10�5 that persists for the CCD method in calcu-
lating the laminar equilibrium flow.

Reason for the persistence of aliasing error created is due to the fact that the CCD scheme is central in nature. One of the
ways to tackle this problem is to use upwinding in evaluating the convection terms. In performing this, we add explicitly a
fourth-order dissipative term to the calculated first derivative, that is of the type gDx3 @4x

@x4 for the stream-wise derivative.
Here, one chooses g as a user-defined constant to control the quantity of upwinding. A similar term is added to the y-deriv-
ative of the vorticity. As the CCD method has excellent dissipation discretization property, one does not, in general, require to
add large explicit higher order dissipation inside the shear layer. This observation is used in fixing the dissipative constant g.
In the wall-normal direction, g is chosen as 0:08 for all heights. In the bottom frame of Fig. 8, results are shown for the equi-
librium solution obtained using this upwinded CCD method at t ¼ 105. This upwinding is applied using the solution at
t ¼ 77. One can clearly see the total absence of aliasing outside the shear layer. It is noted that the value of x is zero at
the designated point P.

In Fig. 8, it is shown how one can further improve the CCD method proposed in [4] in controlling aliasing error for high
accuracy calculations of a shear and pressure driven equilibrium flow. More intricate requirements from the numerical
method are needed, when it is used to solve for higher order quantities. In the present exercise, we are looking for the recep-
tivity solution for disturbance quantities by solving Navier–Stokes equation for the equilibrium and the disturbance flows.
The equilibrium solution shown in Fig. 8 is perturbed by a time-harmonic localized source at the wall. It is well known that
boundary layers respond to such excitations by displaying spatially growing waves caused by the instability of the laminar
equilibrium flow, if the excitation frequency is neither too low or too high. Here, a simultaneous blowing-suction type har-
monic exciter is used that creates a normal velocity perturbation given by vd ¼ Am sinð6:546tÞ, where the amplitude of the
perturbation is given by, Am ¼ ð�15:1875n5 þ 35:4375n4 � 20:25n3Þ. The non-dimensional variable is defined via, n ¼ ðx�2:48Þ

0:02 .
This type of excitation field was also used in [28].

Typical solutions to this receptivity problem are demonstrated in Fig. 9 for the above excitation at the indicated time in-
stants. In the top frame, the solution obtained by the CCD method without any upwinding is shown. One notes the computed
flow field to be contaminated severely by aliasing error – outside and within the shear layer. Outside the shear layer it orig-
inates from the discontinuity line starting from the leading edge of the plate and inside the shear layer, it is noted near the
outflow. The level of error seen at t ¼ 11 is two orders of magnitude larger than that was noted for the equilibrium flow at
the same designated point, P. The excitation was applied to the solution at t ¼ 77 shown in Fig. 8 and the time counter is
advanced from zero. Thus, the solution indicates severe degradation with time. In fact the solution shown in the top frame
was numerically destabilized, a few time steps later. Another set of calculations are performed starting from the same initial
data with the same upwinding used for the equilibrium solution of Navier–Stokes equation. The computed solutions are
shown in the bottom three frames of Fig. 9. Significant improvement of results are seen in all the three frames, despite
the fact that the equilibrium solution was itself contaminated. At the designated point P, the induced vorticity value reduces
to zero. Also, the aliasing error reduces inside the shear layer, near the outflow of the computational domain.
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5. Conclusion

Here the CCD scheme recently proposed in [4], has been further analyzed and modifications suggested in solving Navier–
Stokes equation for an internal and an external flow. The CCD scheme is known for its better dissipation discretization prop-
erties as compared to any other explicit and implicit schemes. We have additionally defined a gain and a loss function to
quantify the effectiveness of dissipation discretization and various methods have been compared in Figs. 2 and 3. It is noted
that followed by CCD method, the OUCS3 method applied twice seemed to perform well. In [4] the DRP properties were
shown for the CCD method in solving wave propagation problems. Here, we study the aliasing error property of CCD method
in comparison to some other compact schemes. It is shown that the better de-aliasing property of CCD method is actually
related to its dissipation discretization property.

The above properties were investigated with respect to benchmark internal and external flows. The square lid-driven cav-
ity problem at Re ¼ 10;000 is investigated to show the existence of a new ‘‘equilibrium solution”, whose existence is related
to better resolution and de-aliasing property of the present scheme. However, when the same method is used to study the
receptivity of a boundary layer by solving the Navier–Stokes equation, it was found that problems occurred outside the thin
shear layer in the form of aliasing. By solving additionally the receptivity to time-harmonic localized excitation on the sur-
face, we noted that modifications, in terms of upwinding the convection terms are required. This aspect of CCD scheme was
not known before and the present solution seems to work extremely well in solving this problem of flow instability and
receptivity.
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